试题

题目:
计算:
(1)
6
+4
3
+3
2
(
6
+
3
)(
3
+
2
)

(2)
10
+
14
-
15
-
21
10
+
14
15
21

(3)
1
3+
3
+
1
5
3
+3
5
+
1
7
5
+5
7
+…+
1
49
47
+47
49

(4)
3
15
-
10
-2
6
+3
3
-
2
+18
5
+2
3+1

答案
解:(1)
6
+4
3
+3
2
(
6
+
3
)(
3
+
2
)
=
(
6
+
3
)+3(
3
+
2
)
(
6
+
3
)(
3
+
2
)
=
1
3
+
2
+
3
6
+
3
=
3
-
2
+
6
-
3
=
6
-
2

(2)
10
+
14
-
15
-
21
10
+
14
15
21
=
2
(
5
+
7
)-
3
(
5
+
7
)
2
(
5
+
7
)+
3
(
5
+
7
)
=
2
-
3
2
+
3
=2
6
-5;
(3)
1
3+
3
+
1
5
3
+3
5
+
1
7
5
+5
7
+…+
1
49
47
+47
49
=
1
2
(1-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
5
-
1
7
)+…+(
1
47
-
1
49
)=
1
2
(1-
1
49
)=
3
7

(4)
3
15
-
10
-2
6
+3
3
-
2
+18
5
+2
3+1
=
5
(3
3
-
2
)+2
3
(3
3
-
2
)+(3
3
-
2
)
5
+2
3
+1

=
(3
3
-
2
)(
5
+2
3
+1)
5
+2
3
+1
=3
3
-
2

解:(1)
6
+4
3
+3
2
(
6
+
3
)(
3
+
2
)
=
(
6
+
3
)+3(
3
+
2
)
(
6
+
3
)(
3
+
2
)
=
1
3
+
2
+
3
6
+
3
=
3
-
2
+
6
-
3
=
6
-
2

(2)
10
+
14
-
15
-
21
10
+
14
15
21
=
2
(
5
+
7
)-
3
(
5
+
7
)
2
(
5
+
7
)+
3
(
5
+
7
)
=
2
-
3
2
+
3
=2
6
-5;
(3)
1
3+
3
+
1
5
3
+3
5
+
1
7
5
+5
7
+…+
1
49
47
+47
49
=
1
2
(1-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
5
-
1
7
)+…+(
1
47
-
1
49
)=
1
2
(1-
1
49
)=
3
7

(4)
3
15
-
10
-2
6
+3
3
-
2
+18
5
+2
3+1
=
5
(3
3
-
2
)+2
3
(3
3
-
2
)+(3
3
-
2
)
5
+2
3
+1

=
(3
3
-
2
)(
5
+2
3
+1)
5
+2
3
+1
=3
3
-
2
考点梳理
二次根式的混合运算.
(1)将分子拆项,根据通分的逆运算,把一个分数化为两个分数,分别分母有理化;
(2)将分子、分母分组分解,再约分即可;
(3)观察规律,将每一个二次根式分为两个二次根式,寻找抵消规律;
(4)将分子分组分解,与分母约分即可.
若一开始就把分母有理化,则使计算复杂化,观察每题中分子与分母的数字特点,通过分拆、分解、一般化、配方等方法寻找它们的联系,以此为解题的突破口.
计算题.
找相似题