试题

题目:
阅读下面问题:
1
1+
2
=
1×(
2
-1)
(
2
+1)(
2
-1)
=
2
-1
1
3
+
2
=
3
-
2
(
3
+
2
)(
3
-
2
)
=
3
-
2
1
5
+2
=
5
-2
(
5
+2)(
5
-2)
=
5
-2

试求:(1)
1
n+1
+
n
=
n+1
-
n
n+1
-
n

(2)利用上面所揭示的规律计算:(
1
1+
2
+
1
2
+
3
+
1
3
+
4
+…+
1
2012
+
2013
+
1
2013
+
2014
)×(
2014
+1

答案
n+1
-
n

解:(1)
1
n+1
+
n
=
n+1
-
n
(
n+1
+
n
)(
n+1
-
n
)
=
n+1
-
n

故答案为:
n+1
-
n


(2)(
1
1+
2
+
1
2
+
3
+
1
3
+
4
+…+
1
2012
+
2013
+
1
2013
+
2014
)×(
2014
+1),
=(
2
-1+
3
-
2
+
4
-
3
+…+
2013
-
2012
+
2014
-
2013
)×(
2014
+1),
=(
2014
-1)×(
2014
+1),
=2014-1,
=2013.
考点梳理
分母有理化.
(1)分子、分母都乘分母有理化因式
n+1
-
n
即可;
(2)根据规律把所有分式分母有理化,然后进行计算即可得解.
本题考查了分母有理化,读懂题目信息理解分母有理化并准确确定出有理化因式是解题的关键.
规律型.
找相似题