试题
题目:
阅读下列解题过程:
1
5
+
4
=
1×(
5
-
4
)
(
5
+
4
)(
5
-
4
)
=
5
-
4
,
1
6
+
5
=
1×(
6
-
5
)
(
6
+
5
)(
6
-
5
)
=
6
-
5
,请回答下列回题:
(1)观察上面的解答过程,请写出
1
n+1
+
n
=
n+1
-
n
n+1
-
n
;
(2)利用上面的解法,请化简:
1
1+
2
+
1
2
+
3
+
1
3
+
4
+…+
1
98
+
99
+
1
99
+
100
.
答案
n+1
-
n
解:(1)
1
n+1
+
n
=
n+1
-
n
,
故答案为:
n+1
-
n
;
(2)
1
1+
2
+
1
2
+
3
+
1
3
+
4
+…+
1
98
+
99
+
1
99
+
100
,
=
2
-1+
3
-
2
+
4
-
3
+…+
99
-
98
+
100
-
99
,
=
100
-1,
=9.
考点梳理
考点
分析
点评
专题
分母有理化.
(1)分子、分母同乘以最简公分母
n+1
-
n
,化简即可;
(2)把各加数分母有理化,再合并同类二次根式.
此题考查二次根式的分母有理化,确定最简公分母和合并同类二次根式是关键.
规律型.
找相似题
(2005·湘潭)下列算式中,你认为错误的是( )
(2005·广元)如果
a=
1
2
+1
,b=
2
-1
,那么( )
(2003·无锡)化简
1
3
-
2
的结果是( )
(2002·金华)把
1
2
-1
分母有理化的结果是( )
(2002·嘉兴)化简:
1
2
-1
=( )