试题
题目:
数据-2,-3,4,-1,x的众数为-3,则这组数据的极差是
7
7
,方差为
6.8
6.8
.
答案
7
6.8
解:因为众数数是-3,
根据众数的定义可得x=-3,
所以极差=4-(-3)=7,
平均数为(-2-3+4-1+x)÷5=-1,
方差为S
2
=
1
n
[(x
1
-
.
x
)
2
+(x
2
-
.
x
)
2
+…+(x
n
-
.
x
)
2
]
=
1
5
[(-2+1)
2
+(-3+1)
2
+…+(-3+1)
2
]
=6.8.
故答案为7,6.8.
考点梳理
考点
分析
点评
专题
方差;众数;极差.
根据众数的定义先求出x,再根据极差的定义,方差公式得出结论.
本题考查统计知识中的众数数、极差和方差的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数只要求出数据之和再除以总个数即可.
方差公式为:S
2
=
1
n
[(x
1
-
.
x
)
2
+(x
2
-
.
x
)
2
+…+(x
n
-
.
x
)
2
].
计算题.
找相似题
(2013·太原)某班实行每周量化考核制,学期末对考核成绩进行统计.结果甲、乙两组的平均成绩相同.方差分别是
s
2
甲
=36,
s
2
乙
=30,则两组成绩的稳定性( )
(2013·台州)甲,乙,丙,丁四人进行射击测试,每人10次射击成绩的平均数都约为8.8环,方差分别为s
2
甲
=0.63,s
2
乙
=0.51,s
2
丙
=0.48,s
2
丁
=0.42,则四人中成绩最稳定的是( )
(2013·台湾)某社团有60人,附表为此社团成员年龄的次数分配表.求此社团成员年龄的四分位距为何?( )
年龄(岁)
36
38
39
43
46
48
50
55
58
60
62
65
次数(人)
4
5
7
5
5
2
1
10
7
8
3
3
(2013·泉州)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:
选手
甲
乙
丙
丁
方差(环
2
)
0.035
0.016
0.022
0.025
则这四个人种成绩发挥最稳定的是( )
(2013·衢州)一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).
组员
甲
乙
丙
丁
戊
方差
平均成绩
得分
81
79
■
80
82
■
80
那么被遮盖的两个数据依次是( )