(2011·鼓楼区二模)如图,MN=8,点P、Q在线段MN上,且PM=1,NQ=2.C是线段MN上的动点,分别以CM、CN为斜边在线段MN的同侧作直角△ACM和直角△BCN,使∠AMC=∠BCN=30°,连接AB,设AB的中点为D,当点C从点P运动到点Q时,点D移动路径的长是
解:取CN的中点E,连接DE,设MC=x,1≤x≤6,| x |
| 2 |
| x |
| 2 |
| AC+BN |
| 2 |
| x |
| 2 |
| x |
| 2 |
(2013·巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是( )
(2012·达州)如图,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,则下列结论:
(2010·达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了( )
(2008·岳阳)如图,∠CDA=∠BAD=90°,AB=2CD,M,N分别为AD,BC的中点,连MN交AC、BD于点E、F,若ME=4,则EF的长度是( )
(2008·泸州)如图,梯形ABCD中,AD∥BC,E、F分别是两腰的中点,且AD=5,BC=7,则EF的长为( )