试题
题目:
如图,等腰三角形ABC中,AB=AC,点D是底边BC上的点(不与B、C重合),E、F分别在AC、AB上,且DE∥AB,DF∥AC,试问DE、DF与AC之间有什么数量关系吗?请写出探索过程.
答案
答:DE+DF=AC.
证明:如图,∵DE∥AB,DF∥AC,
∴四边形AEDF是平行四边形,
∴DF=AE,∠EDC=∠B,
又∵AB=AC,
∴∠B=∠C,
∴∠EDC=∠C,
∴DE=CE,
∴DE+DF=CE+AE=AC.
答:DE+DF=AC.
证明:如图,∵DE∥AB,DF∥AC,
∴四边形AEDF是平行四边形,
∴DF=AE,∠EDC=∠B,
又∵AB=AC,
∴∠B=∠C,
∴∠EDC=∠C,
∴DE=CE,
∴DE+DF=CE+AE=AC.
考点梳理
考点
分析
点评
等腰三角形的判定与性质;平行线的性质.
由DE∥AB,DF∥AC,四边形AEDF是平行四边形,则可得DF=AE,又由AB=AC,易证得△EDC是等腰三角形,则可得ED=EC,即可证得DE+DF=AC.
此题考查了等腰三角形的性质与判定以及平行四边形的性质与判定.此题难度适中,注意掌握数形结合思想的应用.
找相似题
(2012·铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD的周长是( )
如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,若△ABD的周长比△BCD的周长多2厘米,则BD的长是( )
如图所示,在△ABC中,AB=AC,∠A=36°,角平分线BD与CE相交于点O,那么图中等腰三角形共有( )
如图,等腰△ABC中,底边BC=a,∠A=36°,∠ABC的平分线交AC于D,∠BCD的平分线交BD于E,则图中等腰三角形共有( )个.