试题
题目:
如图,B、C、E在同一直线上,AB=BC,BD平分∠ABC交AC于点D,且AD=CE,那么△DCE是等腰三角形吗?为什么?
答案
解:△DCE是等腰三角形.理由如下:
∵AB=BC,
∴△ABC是等腰三角形,
又∵BD平分∠ABC,
∴AD=CD,
又AD=CE,所以CD=CE,所以△DCE是等腰三角形.
解:△DCE是等腰三角形.理由如下:
∵AB=BC,
∴△ABC是等腰三角形,
又∵BD平分∠ABC,
∴AD=CD,
又AD=CE,所以CD=CE,所以△DCE是等腰三角形.
考点梳理
考点
分析
点评
专题
等腰三角形的判定与性质.
根据已知AB=BC得三角形ABC是等腰三角形,B是顶角,BD是平分线,所以AD=DC,又AD=CE,所以CD=CE,所以是等腰三角形.
此题考查的知识点是等腰三角形的判定与性质,由等腰三角形等角平分线性质得AD=CD是关键.
探究型.
找相似题
(2012·铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD的周长是( )
如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,若△ABD的周长比△BCD的周长多2厘米,则BD的长是( )
如图所示,在△ABC中,AB=AC,∠A=36°,角平分线BD与CE相交于点O,那么图中等腰三角形共有( )
如图,等腰△ABC中,底边BC=a,∠A=36°,∠ABC的平分线交AC于D,∠BCD的平分线交BD于E,则图中等腰三角形共有( )个.