试题
题目:
如图,在△ABC中,∠B=2∠C,且AD⊥BC于D.求证:CD=AB+BD.
答案
证明:如图,在DC上取DE=BD,
∵AD⊥BC,
∴AB=AE,
∴∠B=∠AEB,
在△ACE中,∠AEB=∠C+∠CAE,
又∵∠B=2∠C,
∴2∠C=∠C+∠CAE,
∴∠C=∠CAE,
∴AE=CE,
∴CD=CE+DE=AB+BD.
证明:如图,在DC上取DE=BD,
∵AD⊥BC,
∴AB=AE,
∴∠B=∠AEB,
在△ACE中,∠AEB=∠C+∠CAE,
又∵∠B=2∠C,
∴2∠C=∠C+∠CAE,
∴∠C=∠CAE,
∴AE=CE,
∴CD=CE+DE=AB+BD.
考点梳理
考点
分析
点评
专题
等腰三角形的判定与性质.
在DC上取DE=BD,然后根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AB=AE,根据等边对等角的性质可得∠B=∠AEB,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠C=∠CAE,再根据等角对等边的性质求出AE=CE,然后即可得证.
本题考查了等腰三角形的判定与性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.
证明题.
找相似题
(2012·铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD的周长是( )
如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,若△ABD的周长比△BCD的周长多2厘米,则BD的长是( )
如图所示,在△ABC中,AB=AC,∠A=36°,角平分线BD与CE相交于点O,那么图中等腰三角形共有( )
如图,等腰△ABC中,底边BC=a,∠A=36°,∠ABC的平分线交AC于D,∠BCD的平分线交BD于E,则图中等腰三角形共有( )个.