试题
题目:
如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.
(1)CO是△BCD的高吗?为什么?
(2)求∠5、∠7的度数.
答案
解:(1)CO是△BCD的高.理由如下:
∵BC⊥CD,
∴∠DCB=90°,
∴∠1=∠2=∠3=45°,
∴△DCB是等腰直角三角形,
∴CO是∠DCB的角平分线,
∴CO⊥BD(等腰三角形三线合一);
(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,
∴∠5=30°,
又∵∠5=∠6,
∴∠6=30°,
∴在直角△AOB中,
∠7=180°-90°-30°=60°.
解:(1)CO是△BCD的高.理由如下:
∵BC⊥CD,
∴∠DCB=90°,
∴∠1=∠2=∠3=45°,
∴△DCB是等腰直角三角形,
∴CO是∠DCB的角平分线,
∴CO⊥BD(等腰三角形三线合一);
(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,
∴∠5=30°,
又∵∠5=∠6,
∴∠6=30°,
∴在直角△AOB中,
∠7=180°-90°-30°=60°.
考点梳理
考点
分析
点评
专题
等腰三角形的判定与性质.
(1)由BC⊥CD,则∠DCB=90°,可得∠1=∠2=∠3=45°,即CD=CB,所以,CO是等腰直角△DCB的角平分线,则可得CO⊥BD;
(2)在△ACD中,由∠1=∠3=45°,∠4=60°,根据三角形的内角和定理,可求得∠5=30°,又∠5=∠6,所以,在直角△AOB中,即可得出∠7的度数;
本题主要看考查了等腰三角形的判定与性质,熟记等腰三角形的三线合一,是正确解答本题的关键.
计算题;证明题.
找相似题
(2012·铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD的周长是( )
如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,若△ABD的周长比△BCD的周长多2厘米,则BD的长是( )
如图所示,在△ABC中,AB=AC,∠A=36°,角平分线BD与CE相交于点O,那么图中等腰三角形共有( )
如图,等腰△ABC中,底边BC=a,∠A=36°,∠ABC的平分线交AC于D,∠BCD的平分线交BD于E,则图中等腰三角形共有( )个.