试题
题目:
如图所示.△ABC中,AE是∠A的平分线,CD⊥AE于D.求证:∠ACD>∠B.
答案
证明:延长CD交AB于F点.
∵AE是∠A的平分线,CD⊥AE,
∴∠FAD=∠CAD,∠ADC=∠ADF=90°.
又AD公共,
∴△ADC≌△ADF,
∴∠ACD=∠AFD.
∵∠AFC是△BCF的外角,
∴∠AFC>∠B.
∴∠ACD>∠B.
证明:延长CD交AB于F点.
∵AE是∠A的平分线,CD⊥AE,
∴∠FAD=∠CAD,∠ADC=∠ADF=90°.
又AD公共,
∴△ADC≌△ADF,
∴∠ACD=∠AFD.
∵∠AFC是△BCF的外角,
∴∠AFC>∠B.
∴∠ACD>∠B.
考点梳理
考点
分析
点评
等腰三角形的判定与性质;三角形的外角性质.
延长CD交AB于F点,可证明△ACD与△AFD全等.根据∠AFC是△BCF的外角可证结论.
此题考查三角形全等的判定和性质及三角形外角的性质.作出辅助线建立两角的联系是难点.
找相似题
(2012·铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD的周长是( )
如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,若△ABD的周长比△BCD的周长多2厘米,则BD的长是( )
如图所示,在△ABC中,AB=AC,∠A=36°,角平分线BD与CE相交于点O,那么图中等腰三角形共有( )
如图,等腰△ABC中,底边BC=a,∠A=36°,∠ABC的平分线交AC于D,∠BCD的平分线交BD于E,则图中等腰三角形共有( )个.