答案
解:(1)共有2个等腰三角形,是△DEB和△DFC.
理由是:∵BD平分∠ABC,CD平分∠ACB,
∴∠EBD=∠CBD,∠FCD=∠BCD,
∵EF∥BC,
∴∠EDB=∠CBD,∠FDC=∠BCD,
∴∠EDB=∠EBD,∠FDC=∠FCD,
∴DE=BE,CF=DF,
即△DEB和△DFC是等腰三角形.
(2)EF与BE、CF之间的关系是EF=BE+CF.
理由是:由(1)知BE=DE,CF=DF,
∴EF=DE+DF=BE+CF,
即EF=BE+CF.
解:(1)共有2个等腰三角形,是△DEB和△DFC.
理由是:∵BD平分∠ABC,CD平分∠ACB,
∴∠EBD=∠CBD,∠FCD=∠BCD,
∵EF∥BC,
∴∠EDB=∠CBD,∠FDC=∠BCD,
∴∠EDB=∠EBD,∠FDC=∠FCD,
∴DE=BE,CF=DF,
即△DEB和△DFC是等腰三角形.
(2)EF与BE、CF之间的关系是EF=BE+CF.
理由是:由(1)知BE=DE,CF=DF,
∴EF=DE+DF=BE+CF,
即EF=BE+CF.