试题
题目:
如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,AB=5,AC=7,BC=8,△AEF的周长为( )
A.13
B.12
C.15
D.20
答案
B
解:∵EF∥BC,
∴∠EDB=∠DBC,
∵BD平分∠ABC,
∴∠EBD=∠CBD,
∴∠EDB=∠EBD,
∴BE=ED,
同理DF=CF,
∴△AEF的周长是AE+EF+AF
=AE+ED+DF+AF
=AE+BE+CF+AF
=AB+AC
=5+7
=12.
故选B.
考点梳理
考点
分析
点评
等腰三角形的判定与性质;平行线的性质.
根据平行线性质和角平分线定义得出∠EDB=∠EBD,推出BE=ED,同理DF=CF,求出△AEF的周长=AB+AC,代入求出即可.
本题考查了平行线性质,等腰三角形的判定,角平分线定义的应用,关键是推出AE+EF+AF=AB+AC
找相似题
(2012·铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD的周长是( )
如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,若△ABD的周长比△BCD的周长多2厘米,则BD的长是( )
如图所示,在△ABC中,AB=AC,∠A=36°,角平分线BD与CE相交于点O,那么图中等腰三角形共有( )
如图,等腰△ABC中,底边BC=a,∠A=36°,∠ABC的平分线交AC于D,∠BCD的平分线交BD于E,则图中等腰三角形共有( )个.