试题
题目:
已知:如图,在△ABC中,∠B=∠C,点D、E、F分别是边BC、AB、AC上的点,BE=CD,连接DE、DF,有∠EDF=∠C,那么DE和DF相等吗?试说明理由.
答案
解:DE=DF.
证明:∵∠CDF+∠EDF+∠BDE=180°,∠CDF+∠C+∠CFD=180°
∴∠BDE=∠CFD
在△EBD和△DCF中
∠BDE=∠CFD
BE=CD
∠B=∠C
∴△EBD≌△DCF
∴DE=DF
解:DE=DF.
证明:∵∠CDF+∠EDF+∠BDE=180°,∠CDF+∠C+∠CFD=180°
∴∠BDE=∠CFD
在△EBD和△DCF中
∠BDE=∠CFD
BE=CD
∠B=∠C
∴△EBD≌△DCF
∴DE=DF
考点梳理
考点
分析
点评
等腰三角形的判定与性质.
根据等腰三角形的性质,可求得∠DFC=∠BDE.从而证△EBD≌△DCF.
此题考查了等边三角形的判定与性质.此题难度不大,解题的关键是能根据题意得到∠BDE=∠CFD.
找相似题
(2012·铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为( )
如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD的周长是( )
如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,若△ABD的周长比△BCD的周长多2厘米,则BD的长是( )
如图所示,在△ABC中,AB=AC,∠A=36°,角平分线BD与CE相交于点O,那么图中等腰三角形共有( )
如图,等腰△ABC中,底边BC=a,∠A=36°,∠ABC的平分线交AC于D,∠BCD的平分线交BD于E,则图中等腰三角形共有( )个.