试题

题目:
若有理数x,y满足|x|=7,|y|=4,且|x+y|=x+y,则x-y=
3或11
3或11

答案
3或11

解:∵|x|=7,|y|=4,
∴x=±7,y=±4,
而|x+y|=x+y,
∴x=7,y=4或x=7,y=-4,
∴x-y=7-4=3或x-y=7-(-4)=11.
故答案为3或11.
考点梳理
绝对值;有理数的加减混合运算.
根据绝对值的意义得到x=±7,y=±4,又由于|x+y|=x+y≥0,则x=7,y=4或x=7,y=-4,然后分别代入x-y中计算即可.
本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.
计算题.
找相似题