试题
题目:
(1)已知
A=
1
x-2
,B=
2
x
2
-4
,C=
x
x+2
.将它们组合成(A-B)÷C或A-B÷C的形式,请你从中任选一种进行计算,先化简,再求值,其中x=3.
(2)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为100米的点P处.这时,一辆
出租车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒且∠APO=60°,∠BPO=45°.
①求A、B之间的路程;
②请判断此出租车是否超过了城南大道每小时60千米的限制速度?(参考数据:
2
≈1.41
,
3
≈1.73
).
答案
解:(1)(A-B)÷C
=(
1
x-2
-
2
x
2
-4
)
÷
x
x+2
=
x+2-2
(x-2)(x+2)
·
x+2
x
=
1
x-2
,
当x=3时,原式=
1
3-2
=1;
(2)①由题意知:PO=100米,∠APO=60°,∠BPO=45°,
在直角三角形BPO中,
∵∠BPO=45°,
∴BO=PO=100米,
在直角三角形APO中,
∵∠APO=60°,
∴AO=PB·tan60°=100
3
米,
∴AB=AO-BO=(100
3
-100)≈73(米);
②∵从A处行驶到B处所用的时间为4秒,
∴速度为73÷4=18.25米/秒,
60千米/时≈16.67米/秒,
∵18.25>16.67,
∴此车超过了每小时60千米的限制速度.
解:(1)(A-B)÷C
=(
1
x-2
-
2
x
2
-4
)
÷
x
x+2
=
x+2-2
(x-2)(x+2)
·
x+2
x
=
1
x-2
,
当x=3时,原式=
1
3-2
=1;
(2)①由题意知:PO=100米,∠APO=60°,∠BPO=45°,
在直角三角形BPO中,
∵∠BPO=45°,
∴BO=PO=100米,
在直角三角形APO中,
∵∠APO=60°,
∴AO=PB·tan60°=100
3
米,
∴AB=AO-BO=(100
3
-100)≈73(米);
②∵从A处行驶到B处所用的时间为4秒,
∴速度为73÷4=18.25米/秒,
60千米/时≈16.67米/秒,
∵18.25>16.67,
∴此车超过了每小时60千米的限制速度.
考点梳理
考点
分析
点评
勾股定理的应用;分式的化简求值.
(1)把表示A、B、C的分式代入(A-B)÷C,进行分式的混合运算,再把x=3代入化简后的式子即可;
(2)①利用三角函数在两个直角三角形中分别计算出BO、AO的长,即可算出AB的长;
②利用路程÷时间=速度,计算出出租车的速度,再把60千米/时化为16.67米/秒,再进行比较即可.
此题主要考查了分式的化简求值,以及勾股定理的应用,关键是根据题意计算出BO、AO的长.
找相似题
(2011·金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )
(2007·茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
(2013·余姚市模拟)已知:如图,无盖无底的正方体纸盒ABCD-EFGH,P,Q分别为棱FB,GC上的点,且FP=2PB,GQ=
1
2
QC,若将这个正方体纸盒沿折线AP-PQ-QH裁剪并展开,得到的平面图形是( )
(2012·乐山模拟)一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C处,看到灯塔在它的正南方向,则这艘船航行的速度为( )
(2011·鹤岗模拟)如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90°,并测得AC长20米,BC长16米,则A点和B点之间的距离为( )米.