试题
题目:
如图,已知一块四边形的草地ABCD,其中∠A=60°,∠B=∠D=90°,AB=20米,CD=10米,求这块草地的面积.
答案
解:分别延长AD,BC交于点E.
∵∠A=60°,∠B=∠D=90°,
∴∠DCE=∠A=60°,
∴∠E=30°,DE=CD÷tan30°=10÷
3
3
=10
3
,
∴BE=ABcot30°=20
3
,
四边形ABCD的面积=S
△ABE
-S
△CED
=
1
2
BE·AB-
1
2
CD·DE
=200
3
-50
3
=150
3
.
解:分别延长AD,BC交于点E.
∵∠A=60°,∠B=∠D=90°,
∴∠DCE=∠A=60°,
∴∠E=30°,DE=CD÷tan30°=10÷
3
3
=10
3
,
∴BE=ABcot30°=20
3
,
四边形ABCD的面积=S
△ABE
-S
△CED
=
1
2
BE·AB-
1
2
CD·DE
=200
3
-50
3
=150
3
.
考点梳理
考点
分析
点评
专题
勾股定理的应用;含30度角的直角三角形.
所求四边形ABCD的面积=S
△ABE
-S
△CED
.分别延长AD,BC交于点E,在直角三角形中解题,根据角的正弦值与三角形边的关系,可求出各边的长,然后代入三角函数进行求解.
本题考查了勾股定理的应用,通过作辅助线,构造新的直角三角形,利用四边形ABCD的面积=S
△ABE
-S
△CED
来求解.
应用题.
找相似题
(2011·金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )
(2007·茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
(2013·余姚市模拟)已知:如图,无盖无底的正方体纸盒ABCD-EFGH,P,Q分别为棱FB,GC上的点,且FP=2PB,GQ=
1
2
QC,若将这个正方体纸盒沿折线AP-PQ-QH裁剪并展开,得到的平面图形是( )
(2012·乐山模拟)一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C处,看到灯塔在它的正南方向,则这艘船航行的速度为( )
(2011·鹤岗模拟)如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90°,并测得AC长20米,BC长16米,则A点和B点之间的距离为( )米.