试题
题目:
如图,甲轮船以16海里/小时的速度离开港口O向东南方向航行,乙轮船同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B、A两点,且知AB=30海里,问乙轮船每小时航行多少海里?
答案
解:∵甲轮船向东南方向航行,乙轮船向西南方向航行,
∴AO⊥BO,
∵甲轮船以16海里/小时的速度航行了一个半小时,
∴OB=16×1.5=24海里,AB=30海里,
∴在Rt△AOB中,AO=
AB
2
-
OB
2
=
30
2
-
24
2
=18,
∴乙轮船航行的速度为:18÷1.5=12海里.
解:∵甲轮船向东南方向航行,乙轮船向西南方向航行,
∴AO⊥BO,
∵甲轮船以16海里/小时的速度航行了一个半小时,
∴OB=16×1.5=24海里,AB=30海里,
∴在Rt△AOB中,AO=
AB
2
-
OB
2
=
30
2
-
24
2
=18,
∴乙轮船航行的速度为:18÷1.5=12海里.
考点梳理
考点
分析
点评
专题
勾股定理的应用.
根据题目提供的方位角判定AO⊥BO,然后根据甲轮船的速度和行驶时间求得OB的长,利用勾股定理求得OA的长,除以时间即得到乙轮船的行驶速度.
本题考查了勾股定理的应用,解决本题的关键是根据题目提供的方位角判定直角三角形.
应用题.
找相似题
(2011·金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )
(2007·茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
(2013·余姚市模拟)已知:如图,无盖无底的正方体纸盒ABCD-EFGH,P,Q分别为棱FB,GC上的点,且FP=2PB,GQ=
1
2
QC,若将这个正方体纸盒沿折线AP-PQ-QH裁剪并展开,得到的平面图形是( )
(2012·乐山模拟)一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C处,看到灯塔在它的正南方向,则这艘船航行的速度为( )
(2011·鹤岗模拟)如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90°,并测得AC长20米,BC长16米,则A点和B点之间的距离为( )米.