试题
题目:
如图,某风景区的沿湖公路AB=3千米,BC=4千米,CD=12千米,AD=13千米,其中AB⊥BC,图中阴影是草地,其余是水面.那么乘游艇游点C出发,行进速度为每小时11
7
13
千米,到达对岸AD最少要用
0.4
0.4
小时.
答案
0.4
解:连接AC,
在直角△ABC中,AB=3km,BC=4km,则AC=
3
2
+
4
2
=5km,
∵CD=12km,AD=13km,故存在AD
2
=AC
2
+CD
2
∴△ACD为直角三角形,且∠ACD=90°,
∴△ACD的面积为
1
2
×AC×CD=30km
2
,
∵AD=13km,∴AD边上的高,即C到AD的最短距离为
2S
13
=
60
13
km,
游艇的速度为11
7
13
=
150
13
km/小时,
需要时间为
60
13
×
13
150
小时=0.4小时.
故答案为 0.4.
考点梳理
考点
分析
点评
专题
勾股定理的应用.
连接AC,在直角△ABC中,已知AB,BC可以求AC,根据AC,CD,AD的长度符合勾股定理确定AC⊥CD,则可计算△ACD的面积,
又因为△ACD的面积可以根据AD边和AD边上的高求得,故根据△ACD的面积可以求得C到AD的最短距离,即△ACD中AD边上的高.
本题考查了勾股定理在实际生活中的应用,考查了直角三角形面积计算公式,本题中证明△ACD是直角三角形是解题的关键.
应用题.
找相似题
(2011·金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )
(2007·茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
(2013·余姚市模拟)已知:如图,无盖无底的正方体纸盒ABCD-EFGH,P,Q分别为棱FB,GC上的点,且FP=2PB,GQ=
1
2
QC,若将这个正方体纸盒沿折线AP-PQ-QH裁剪并展开,得到的平面图形是( )
(2012·乐山模拟)一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C处,看到灯塔在它的正南方向,则这艘船航行的速度为( )
(2011·鹤岗模拟)如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90°,并测得AC长20米,BC长16米,则A点和B点之间的距离为( )米.