试题

题目:
青果学院如图,一架梯子的长度为25米,斜靠在墙上,梯子低部离墙底端为7米.
(1)这个梯子顶端离地面有
24
24
米;
(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向滑动了几米?
答案
24

解:
(1)水平方向为7米,且梯子长度为25米,
则在梯子与底面、墙面构成的直角三角形中,
梯子顶端与地面距离为
25272
=24,

(2)设梯子的底部在水平方向滑动了x米
则(24-4)2+(7+x)2=252
(7+x)2=252-202=225
∴7+x=15
x=8
故答案为24,
答:梯子在水平方向移动了8米.
考点梳理
勾股定理的应用.
在直角三角形中,已知斜边和一条直角边,根据勾股定理即可求出另一条直角边;根据求得的数值减去下滑的4米即可求得新直角三角形中直角边,根据梯子长度不变的等量关系即可解题.
本题考查了勾股定理在实际生活中的应用,考查了勾股定理的巧妙运用,本题中找到梯子长度不变的等量关系是解题的关键.
计算题.
找相似题