试题
题目:
如图,点C是路段AB的中点,小明和小红两人从C同时出发,以相同的速度分别沿两条直线行走,并同时到达D,E两地,并且DA⊥AB于A,EB⊥AB于B.此时小明到路段AB的距离是50米,则小红到路段AB的距离是
50
50
米.
答案
50
解:∵点C是路段AB的中点,
∴AC=CB,
∵小明和小红两人从C同时出发,以相同的速度分别沿两条直线行走,
∴DC=EC,
∵DA⊥AB,EB⊥AB,
∴∠A=∠B=90°,
在Rt△ACD和Rt△BCE中
AC=CB
CD=CE
,
∴Rt△ACD≌Rt△BCE(HL),
∴AD=BE=50米,
故答案为:50.
考点梳理
考点
分析
点评
勾股定理的应用;垂线;全等三角形的判定与性质.
首先根据题意可知AC=CB,DC=EC,再根据HL定理证明Rt△ACD≌Rt△BCE,可得到AD=BE=50米.
此题主要考查了中点定义,全等三角形的判定与性质,解决此题的关键是证明Rt△ACD≌Rt△BCE.
找相似题
(2011·金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )
(2007·茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
(2013·余姚市模拟)已知:如图,无盖无底的正方体纸盒ABCD-EFGH,P,Q分别为棱FB,GC上的点,且FP=2PB,GQ=
1
2
QC,若将这个正方体纸盒沿折线AP-PQ-QH裁剪并展开,得到的平面图形是( )
(2012·乐山模拟)一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C处,看到灯塔在它的正南方向,则这艘船航行的速度为( )
(2011·鹤岗模拟)如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90°,并测得AC长20米,BC长16米,则A点和B点之间的距离为( )米.