试题
题目:
如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量.小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90度.那么这块土地的面积为
36
36
平方米.
答案
36
解:连接AC,
∵∠B=90°
∴AC
2
=AB
2
+BC
2
=25
则AC
2
+AD
2
=25+144=169=13
2
=CD
2
,因此∠CAD=90°,
S
四边形
=S
△ADC
+S
△ABC
=
1
2
AD·AC+
1
2
AB·BC=
1
2
×12×5+
1
2
×4×3=36平方米.
考点梳理
考点
分析
点评
专题
勾股定理的应用.
本题要先把解四边形的问题转化成解三角形的问题,再用勾股定理解答.
解答此题的关键是解四边形的问题转化成解三角形的问题再解答.
应用题.
找相似题
(2011·金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )
(2007·茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
(2013·余姚市模拟)已知:如图,无盖无底的正方体纸盒ABCD-EFGH,P,Q分别为棱FB,GC上的点,且FP=2PB,GQ=
1
2
QC,若将这个正方体纸盒沿折线AP-PQ-QH裁剪并展开,得到的平面图形是( )
(2012·乐山模拟)一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C处,看到灯塔在它的正南方向,则这艘船航行的速度为( )
(2011·鹤岗模拟)如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90°,并测得AC长20米,BC长16米,则A点和B点之间的距离为( )米.