试题

题目:
青果学院如图,△ABC是等边三角形,分别延长CA,AB,BC到A′,B′,C′,使AA′=BB′=CC′=AC,若△ABC的面积为1,则△A′B′C′的面积是
7
7

答案
7

解:连接A′B、B′C、C′A,
∵△ABC是等边三角形,
∴AB=BC=AC,
已知AA′=BB′=CC′=AC,
∴AA′=BB′=CC′=AB=BC=AC,
∴△B′BC和△ABC等底同高,
∴△B′BC的面积等于△ABC的面积为1,
△B′BC和△B′CC′也是等底同高,
∴△B′CC′的面积也为1,
同理得:△A′AB、△A′BB′、△A′AC′、△ACC′的面积都为1,
所以得△A′B′C′的面积为:△A′AB、△A′BB′、△A′AC′、△ACC′、△B′BC、△B′CC′、△ABC的面积之和,
即:1+1+1+1+1+1+1=7,
故答案为:7.
青果学院
考点梳理
等边三角形的判定与性质;三角形的面积;全等三角形的判定与性质.
由于AA′=BB′=CC′=AC,所以得到AA′=BB′=CC′=AB=BC=AC,∴△B′BC和△ABC等底同高,△B′BC和△B′CC′也是等底同高,则由三角形面积公式得△B′BC的面积等于△ABC的面积为1,△B′CC′的面积也为1,同理同理可以求出其他部分的面积,最后求出总和,即△A′B′C′的面积.
本题主要考查了灵活运用三角形的面积公式,求出各部分之间的关系,进而求出面积的方法.
计算题.
找相似题