试题
题目:
七巧板是我们祖先创造的一种智力玩具,它来源于勾股法,如图(1)整幅七巧板是由正方形ABCD分割成大小七块(其中五块是等腰三角形,一块是正方形和一块平行四边形)组成,如图(2)是由七巧板拼成一个梯形,如果正方形ABCD的边长为2
2
,则这个梯形的周长为( )
A.8
B.8+4
2
C.8
2
D.16
答案
B
解:正方形的两条边及对角线刚好构成一等腰直角三角形,因为边长为2
2
,根据勾股定理对角线长为4,所以梯形周长为8
+4
2
.
故选B.
考点梳理
考点
分析
点评
勾股定理的应用.
从图上可以看出,此梯形是等腰梯形,腰长为正方形边长,上底为正方形对角线的一半,下底为对角线的1.5倍.据此即可解答.
本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.
找相似题
(2011·金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )
(2007·茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
(2013·余姚市模拟)已知:如图,无盖无底的正方体纸盒ABCD-EFGH,P,Q分别为棱FB,GC上的点,且FP=2PB,GQ=
1
2
QC,若将这个正方体纸盒沿折线AP-PQ-QH裁剪并展开,得到的平面图形是( )
(2012·乐山模拟)一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C处,看到灯塔在它的正南方向,则这艘船航行的速度为( )
(2011·鹤岗模拟)如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90°,并测得AC长20米,BC长16米,则A点和B点之间的距离为( )米.