试题
题目:
小明准备测量一段河水的深度,他把一根竹竿竖直插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,则河水的深度为( )
A.2m
B.2.5m
C.2.25m
D.3m
答案
A
解:若假设竹竿长x米,则水深(x-0.5)米,由题意得,
x
2
=1.5
2
+(x-0.5)
2
解之得,x=2.5
所以水深2.5-0.5=2米.
故选A.
考点梳理
考点
分析
点评
专题
勾股定理的应用.
经分析知:可以放到一个直角三角形中计算.此直角三角形的斜边是竹竿的长,设为x米.一条直角边是1.5,另一条直角边是(x-0.5)米.根据勾股定理,得:x
2
=1.5
2
+(x-0.5)
2
,x=2.5.那么河水的深度即可解答.
此题的难点在于能够理解题意,正确画出图形.
应用题.
找相似题
(2011·金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )
(2007·茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
(2013·余姚市模拟)已知:如图,无盖无底的正方体纸盒ABCD-EFGH,P,Q分别为棱FB,GC上的点,且FP=2PB,GQ=
1
2
QC,若将这个正方体纸盒沿折线AP-PQ-QH裁剪并展开,得到的平面图形是( )
(2012·乐山模拟)一船向东航行,上午8时到达B处,看到有一灯塔在它的南偏东60°,距离为72海里的A处,上午10时到达C处,看到灯塔在它的正南方向,则这艘船航行的速度为( )
(2011·鹤岗模拟)如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90°,并测得AC长20米,BC长16米,则A点和B点之间的距离为( )米.