试题
题目:
△ABC中,AB=10,BC=6,AC=8,则△ABC的面积是
24
24
.
答案
24
解:∵△ABC中,AB=10,BC=6,AC=8,6
2
+8
2
=10
2
,即BC
2
+AC
2
=AB
2
,
∴△ABC是直角三角形,
∴S
△ABC
=
1
2
BC·AC=
1
2
×6×8=24.
故答案为:24.
考点梳理
考点
分析
点评
专题
勾股定理的逆定理.
先根据勾股定理的逆定理判断出△ABC的形状,再根据三角形的面积公式即可得出结论.
本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a
2
+b
2
=c
2
,那么这个三角形就是直角三角形.
探究型.
找相似题
(2010·长沙)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )
(2003·荆州)木工师傅想利用木条制作一个直角三角形的工具,那么他要选择的三根木条的长度应符合下列哪一组数据( )
(2002·淮安)已知△ABC的三边长分别是3cm、4cm、5cm,则△ABC的面积是( )
(1998·内江)给出下列三组数据:(1)a=2,b=3,c=
13
;(2)a=1.5,b=2,c=2.5;(3)a=4,b=2,c=3.以a,b,c为三角形的三边,其中所有可以构成直角三角形的数据组代号为( )
(1998·河北)已知:k>1,b=2k,a+c=2k
2
,ac=k
4
-1,则以a、b、c为边的三角形( )